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Resumen.- El desplazamiento en los animales marinos es
afectado por diversos factores ambientales, entre ellos las
condiciones hidrodinámicas del medio. En este estudio se
evaluó el efecto de la velocidad de corriente sobre el
desplazamiento de Strongylocentrotus franciscanus  en un canal
experimental en condiciones diurnas y nocturnas. Nuestros
resultados difieren de estudios previos en la cantidad y la
dirección del desplazamiento en estrongilocentrótidos, ya que
los erizos se desplazaron a distancias similares en la dirección
de la corriente y en contra de la corriente, independientemente
de la velocidad de flujo, la distancia diaria que recorrieron fue
de aproximadamente 7 m, menor a lo reportado para la misma
especie de erizo en British Columbia. La diferencia puede
deberse a la ausencia de depredadores o alimento, o bien a las
condiciones de los experimentos diurnos y nocturnos. No se
observaron diferencias en el desplazamiento durante el día y la
noche de S. franciscanus.

Palabras clave: Velocidad de corriente, movimientos diurno y
nocturno, canal experimental

Abstract.- Displacement of marine animals is affected by
diverse environmental factors, including hydrodynamics
performance. We evaluated the effect of current velocity on
the displacement of the sea urchin Strongylocentrotus
franciscanus in an experimental flume, in both light and dark
conditions. We observed that movement of S. franciscanus was
directly proportional to the current speed. Our results differ
from previous studies in the amount and the direction of
displacement of other strongylocentrotids, because sea urchins
displacements were similar in the current direction and counter-
current irrespective of current velocity and our results showed
displacements of circa 7 m per day, smaller to that reported for
experiments in the same urchin species in British Columbia.
The differences may be due to the absence of predators or food,
or the trials in day and night conditions. Day and night
differences in the displacement of S. franciscanus were not
observed.

Key words: Current speed, day and night movement,
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Introduction
Movement patterns are an important factor determining
the distribution and size structure of local populations
(Palmer et al. 1996). Animals move to locate suitable food
sources and habitats, and also to avoid predation,
competition (Meadows & Campbell 1972) and
environmental stress (Swingland & Greenwood 1982).

Displacement is affected by diverse environmental
factors, including food availability (James 2000) and
hydrodynamics performances, which include currents and
waves. The use of hydrodynamic refuges has been

reported in freshwater (Cardinale et al. 2002) and marine
systems (Arsenault & Himmelman 1996). Displacement
in sea urchins appears to be inversely related to the current
velocity (Dance 1987, Kawamata 1998, Dumont et al.
2006) and at shallow depths; wave action may limit urchin
grazing (Himmelman et al. 1983). Also, movement
patterns of sea urchins are species specific (James, 2000),
for example some sea urchins have dial activity patterns
and feed at night or there are intra-specific variation in
movement foraging behavior (Nelson & Vance 1979,
Glynn et al. 1979, Hay 1984).
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The red sea urchin Strongylocentrotus franciscanus
(Aggassiz, 1863) inhabits the exposed coast and protected
rocky areas from Alaska, USA to Cedros Island in Baja
California, Mexico (Ramírez 2000). Nishizaki &
Ackerman (2007) found that juvenile-adult association
in S. franciscanus was correlated to the presence of
predators and current velocity. The present paper
examines the effect of current velocity on the displacement
of the red sea urchin S. franciscanus.

Material and methods
The displacement of S. franciscanus under different
current velocities was evaluated. The red sea urchins
(n = 24, mean total weight = 285 ± 19.5 g; mean test
diameter = 87.0 ± 4.09 cm) were collected from Bahía de
Ensenada, Baja California, Mexico (28º0.3’N, 115º19’W)
and transported in sea water in a thermal isolated container
covered with macro algae to the Ecophysiology
Laboratory (C.I.C.E.S.E.). Immediately after arrival sea
urchins were acclimated for two hours in a tank held at
the same field temperature to recover from the transport
(7 L min-1). We identified individual sea urchins with one
numbered ring tag attached to one of the large spines.

An experimental flume was used to determine the
effect of the current velocity on the displacement of 24
sea urchins. The see-through acrylic tank (flume) was 0.28
m width by 3 m length as described by Bückle et al.
(2003). A grid pattern was attached on the bottom of the
acrylic tanks so movement could be quantified. The
photoperiod was maintained in 12 h light: 12 h dark with
a 30 min transition period. Night measurements were
made in a red light environment. We quantified the
displacement of 6 urchins in the experimental flume in 4
trials at 4 specific current velocities (0, control, 1.09, 2.9
and 3.09 cm s-1) and noted the position of each urchin
every 5 h over 25 h. Displacement was quantified
measuring the straight-line distance from 0-5 h till 25 h
and the direction of the movement of the sea urchins
(n=24), in the current direction or in the counter-current
direction.

We applied a Kruskal-Wallis analysis (one way
analysis of variance on ranks) to test differences in
displacement between sea urchins exposed to different
water flows, to test differences between day and night,
counter current and current direction displacement.
Dunn’s test was used to test for specific differences (Zar
1974).

Results
The displacement of Stongylocentrotus franciscanus
varied according to the current velocity (H=11.911; 3 df;

P=0.008).  It was lower in the trial with no flow (57 cm)
and several fold greater at 2.9 cm s-1 and 3.09 cm s-1 (487.5
and 350.7 cm respectively) (P<0.05) (Fig.1).

Figure 1

Mean displacement of S. franciscanus at different current
velocities. Vertical bars represent standard error

and different letters indicate significant
differences in displacement

Desplazamiento promedio de S. franciscanus a diferentes
velocidades de corriente. Las barras verticales representan

el error estándar y letras diferentes indican diferencia
significativa en el desplazamiento

Figure 2

Mean displacement of S. franciscanus in the current
direction and counter-current. Vertical bars

 represent standard error

Desplazamiento promedio de S. franciscanus a favor y en
contra de la corriente. Las barras verticales

representan el error estándar
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Sea urchins moved in the current direction and
counter-current independently of the current velocity
(P=0.168; Fig. 2) and in both, displacement was smaller
in the control group and it gradually increased with
increasing current velocity up to 2.9 cm s-1. Then (3.09
cm s-1) decreased only in the counter-current displacement
(Fig. 2). However, at mid velocities (1.09 and 2.9 cm s-1)
the urchins in the current direction moved more than those
in counter-current (Fig. 2).

We detected differences in the displacement of the
sea urchin between the night and day at all current
velocities (H= 26.174; 7 df; P<0.001). The displacement
during the day was greater at 2.9 cm s-1 than in the control
as much during the day (240.3 cm vs. 31.7 cm) as during
the night (89.57 cm vs. 25.3 cm) (Kruskal Wallis, P<0.05)
(Fig. 3).

Discussion
The movement of several echinoids appears to be limited
by encounters with conspecifics (Dumont et al. 2006).
At a high density, sea urchins moved at a slower speed
and their net displacement were reduced (Lauzon-Guay
et al. 2006). Sea urchins coming into contact with
congeners remained stationary for a few seconds and then
changed direction (Lauzon-Guay et al. 2006). In our study
S. franciscanus showed a non-directional displacement
that agrees with results of Lauzon-Guay & Scheibling
(2007), this may be attributed to the small space inside
the experimental tanks. In addition to limiting the

displacement, the confinement of the flume likely
increased encounters with congeners.

Sea urchins on barrens can move up to 5 m per day,
and 11 m in 3 days (Dumont et al. 2006). Coincidently
our results showed displacements of ~7 m per day, smaller
than that reported for the same species by Nishisaky &
Ackerman (2007) (0.42 cm s-1) in British Columbia.
Kawamata (1998) in laboratory, and Dumont et al. (2006)
on barrens, observed that the displacement seemed to be
inversely related to current velocity in S. nudus and S.
droebachiensis respectively, being different to our results.
We found that the displacement of S. franciscanus was
positively correlated to the current speed, except counter
current displacement in the 3.09 cm s-1 trial. However,
the urchins in counter-current moved less than those in
direction to the current. This finding may be due to
differences in the order of magnitude in current velocities.
In our study we did not cover conditions that are often
found in the field. Kawamata (1998) using an oscillating
flow tank with high velocity current (20-80 cm s-1),
observed that the rate of movement of S. nudus decreased
with increasing current velocity with an abrupt decrease
beginning at 30 cm s–1. In this study the displacement
was measured at 1 min intervals for 10 min. In contrast,
we recorded displacement during 25 h without an
oscillating flow. We observed that the sea urchins moved
preferably at lower current velocities and that there
probably exists a range of velocities that affect the sea
urchin behavior. Nishizaki & Ackerman (2007) explained
that the juvenile-adult association in S. franciscanus as
wave action protection behavior and observed that under
high water flow, juvenile S. franciscanus sheltered under
adults at higher rates than at low flow.

On shorter temporal and spatial scales, many urchins
are active during the night as a defense against diurnal
predators (Mattison et al. 1977, Nelson & Vance 1979,
Carpenter 1984, Dance 1987). Glynn et al. (1979) point
out that in the natural environment the foraging distance
of Eucidaris galapagensis is from 1 to 3 m at night and
the displacement is lower during the day. In our study of
S. franciscanus we did not observe dial changes in
displacement, perhaps due to the absence of predators
and food.

We did not observe directionality of movement with
respect to the direction of the water current. Deviations
from a random displacement model likely indicate that
local environmental factors (distribution of food patches
and physical environmental conditions) influence
movement (Dumont et al. 2004). A random walk type of
movement is probably the most appropriate strategy for
sea urchins, since they move slowly and can likely only

Figure 3

Mean day and night displacement of S. franciscanus.
Vertical bars represent standard error and

* represents significantly different groups

Desplazamiento promedio diurno y nocturno de S. franciscanus.
Las barras verticales representan el error estándar y

* representa grupos significativamente diferentes
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detect food sources over a limited distance (Zollner &
Lima 1999, Dumont et al. 2007). We concluded that low
current velocity (up to 2.9 cm s-1) does not influence the
displacement of S. franciscanus, and that were differences
between day and night. Possibly, in the presence of
predators and food, day/night displacement may show
another results.
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